2397 lines
65 KiB
C++
2397 lines
65 KiB
C++
|
/*****************************************************************************
|
||
|
|
||
|
$Id$
|
||
|
|
||
|
File: em.cpp
|
||
|
Date: 06Apr06
|
||
|
|
||
|
Copyright (C) 2006-07 by Francis Cianfrocca. All Rights Reserved.
|
||
|
Gmail: blackhedd
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of either: 1) the GNU General Public License
|
||
|
as published by the Free Software Foundation; either version 2 of the
|
||
|
License, or (at your option) any later version; or 2) Ruby's License.
|
||
|
|
||
|
See the file COPYING for complete licensing information.
|
||
|
|
||
|
*****************************************************************************/
|
||
|
|
||
|
// THIS ENTIRE FILE WILL EVENTUALLY BE FOR UNIX BUILDS ONLY.
|
||
|
//#ifdef OS_UNIX
|
||
|
|
||
|
#include "project.h"
|
||
|
|
||
|
/* The numer of max outstanding timers was once a const enum defined in em.h.
|
||
|
* Now we define it here so that users can change its value if necessary.
|
||
|
*/
|
||
|
static unsigned int MaxOutstandingTimers = 100000;
|
||
|
|
||
|
/* The number of accept() done at once in a single tick when the acceptor
|
||
|
* socket becomes readable.
|
||
|
*/
|
||
|
static unsigned int SimultaneousAcceptCount = 10;
|
||
|
|
||
|
/* Internal helper to create a socket with SOCK_CLOEXEC set, and fall
|
||
|
* back to fcntl'ing it if the headers/runtime don't support it.
|
||
|
*/
|
||
|
SOCKET EmSocket (int domain, int type, int protocol)
|
||
|
{
|
||
|
SOCKET sd;
|
||
|
#ifdef HAVE_SOCKET_CLOEXEC
|
||
|
sd = socket (domain, type | SOCK_CLOEXEC, protocol);
|
||
|
if (sd == INVALID_SOCKET) {
|
||
|
sd = socket (domain, type, protocol);
|
||
|
if (sd < 0) {
|
||
|
return sd;
|
||
|
}
|
||
|
SetFdCloexec(sd);
|
||
|
}
|
||
|
#else
|
||
|
sd = socket (domain, type, protocol);
|
||
|
if (sd == INVALID_SOCKET) {
|
||
|
return sd;
|
||
|
}
|
||
|
SetFdCloexec(sd);
|
||
|
#endif
|
||
|
return sd;
|
||
|
}
|
||
|
|
||
|
|
||
|
/***************************************
|
||
|
STATIC EventMachine_t::GetMaxTimerCount
|
||
|
***************************************/
|
||
|
|
||
|
int EventMachine_t::GetMaxTimerCount()
|
||
|
{
|
||
|
return MaxOutstandingTimers;
|
||
|
}
|
||
|
|
||
|
|
||
|
/***************************************
|
||
|
STATIC EventMachine_t::SetMaxTimerCount
|
||
|
***************************************/
|
||
|
|
||
|
void EventMachine_t::SetMaxTimerCount (int count)
|
||
|
{
|
||
|
/* Allow a user to increase the maximum number of outstanding timers.
|
||
|
* If this gets "too high" (a metric that is of course platform dependent),
|
||
|
* bad things will happen like performance problems and possible overuse
|
||
|
* of memory.
|
||
|
* The actual timer mechanism is very efficient so it's hard to know what
|
||
|
* the practical max, but 100,000 shouldn't be too problematical.
|
||
|
*/
|
||
|
if (count < 100)
|
||
|
count = 100;
|
||
|
MaxOutstandingTimers = count;
|
||
|
}
|
||
|
|
||
|
int EventMachine_t::GetSimultaneousAcceptCount()
|
||
|
{
|
||
|
return SimultaneousAcceptCount;
|
||
|
}
|
||
|
|
||
|
void EventMachine_t::SetSimultaneousAcceptCount (int count)
|
||
|
{
|
||
|
if (count < 1)
|
||
|
count = 1;
|
||
|
SimultaneousAcceptCount = count;
|
||
|
}
|
||
|
|
||
|
|
||
|
/******************************
|
||
|
EventMachine_t::EventMachine_t
|
||
|
******************************/
|
||
|
|
||
|
EventMachine_t::EventMachine_t (EMCallback event_callback, Poller_t poller):
|
||
|
NumCloseScheduled (0),
|
||
|
HeartbeatInterval(2000000),
|
||
|
EventCallback (event_callback),
|
||
|
LoopBreakerReader (INVALID_SOCKET),
|
||
|
LoopBreakerWriter (INVALID_SOCKET),
|
||
|
bTerminateSignalReceived (false),
|
||
|
Poller (poller),
|
||
|
epfd (-1),
|
||
|
kqfd (-1)
|
||
|
#ifdef HAVE_INOTIFY
|
||
|
, inotify (NULL)
|
||
|
#endif
|
||
|
{
|
||
|
// Default time-slice is just smaller than one hundred mills.
|
||
|
Quantum.tv_sec = 0;
|
||
|
Quantum.tv_usec = 90000;
|
||
|
|
||
|
// Override the requested poller back to default if needed.
|
||
|
#if !defined(HAVE_EPOLL) && !defined(HAVE_KQUEUE)
|
||
|
Poller = Poller_Default;
|
||
|
#endif
|
||
|
|
||
|
/* Initialize monotonic timekeeping on OS X before the first call to GetRealTime */
|
||
|
#ifdef OS_DARWIN
|
||
|
(void) mach_timebase_info(&mach_timebase);
|
||
|
#endif
|
||
|
|
||
|
#ifdef OS_WIN32
|
||
|
TickCountTickover = 0;
|
||
|
LastTickCount = 0;
|
||
|
#endif
|
||
|
|
||
|
// Make sure the current loop time is sane, in case we do any initializations of
|
||
|
// objects before we start running.
|
||
|
_UpdateTime();
|
||
|
|
||
|
/* We initialize the network library here (only on Windows of course)
|
||
|
* and initialize "loop breakers." Our destructor also does some network-level
|
||
|
* cleanup. There's thus an implicit assumption that any given instance of EventMachine_t
|
||
|
* will only call ::Run once. Is that a good assumption? Should we move some of these
|
||
|
* inits and de-inits into ::Run?
|
||
|
*/
|
||
|
#ifdef OS_WIN32
|
||
|
WSADATA w;
|
||
|
WSAStartup (MAKEWORD (1, 1), &w);
|
||
|
#endif
|
||
|
|
||
|
_InitializeLoopBreaker();
|
||
|
SelectData = new SelectData_t();
|
||
|
}
|
||
|
|
||
|
|
||
|
/*******************************
|
||
|
EventMachine_t::~EventMachine_t
|
||
|
*******************************/
|
||
|
|
||
|
EventMachine_t::~EventMachine_t()
|
||
|
{
|
||
|
// Run down descriptors
|
||
|
size_t i;
|
||
|
for (i = 0; i < NewDescriptors.size(); i++)
|
||
|
delete NewDescriptors[i];
|
||
|
for (i = 0; i < Descriptors.size(); i++)
|
||
|
delete Descriptors[i];
|
||
|
|
||
|
close (LoopBreakerReader);
|
||
|
close (LoopBreakerWriter);
|
||
|
|
||
|
// Remove any file watch descriptors
|
||
|
while(!Files.empty()) {
|
||
|
std::map<int, Bindable_t*>::iterator f = Files.begin();
|
||
|
UnwatchFile (f->first);
|
||
|
}
|
||
|
|
||
|
if (epfd != -1)
|
||
|
close (epfd);
|
||
|
if (kqfd != -1)
|
||
|
close (kqfd);
|
||
|
|
||
|
delete SelectData;
|
||
|
}
|
||
|
|
||
|
|
||
|
/****************************
|
||
|
EventMachine_t::ScheduleHalt
|
||
|
****************************/
|
||
|
|
||
|
void EventMachine_t::ScheduleHalt()
|
||
|
{
|
||
|
/* This is how we stop the machine.
|
||
|
* This can be called by clients. Signal handlers will probably
|
||
|
* set the global flag.
|
||
|
* For now this means there can only be one EventMachine ever running at a time.
|
||
|
*
|
||
|
* IMPORTANT: keep this light, fast, and async-safe. Don't do anything frisky in here,
|
||
|
* because it may be called from signal handlers invoked from code that we don't
|
||
|
* control. At this writing (20Sep06), EM does NOT install any signal handlers of
|
||
|
* its own.
|
||
|
*
|
||
|
* We need a FAQ. And one of the questions is: how do I stop EM when Ctrl-C happens?
|
||
|
* The answer is to call evma_stop_machine, which calls here, from a SIGINT handler.
|
||
|
*/
|
||
|
bTerminateSignalReceived = true;
|
||
|
|
||
|
/* Signal the loopbreaker so we break out of long-running select/epoll/kqueue and
|
||
|
* notice the halt boolean is set. Signalling the loopbreaker also uses a single
|
||
|
* signal-safe syscall.
|
||
|
*/
|
||
|
SignalLoopBreaker();
|
||
|
}
|
||
|
|
||
|
bool EventMachine_t::Stopping()
|
||
|
{
|
||
|
return bTerminateSignalReceived;
|
||
|
}
|
||
|
|
||
|
/*******************************
|
||
|
EventMachine_t::SetTimerQuantum
|
||
|
*******************************/
|
||
|
|
||
|
void EventMachine_t::SetTimerQuantum (int interval)
|
||
|
{
|
||
|
/* We get a timer-quantum expressed in milliseconds.
|
||
|
*/
|
||
|
|
||
|
if ((interval < 5) || (interval > 5*60*1000))
|
||
|
throw std::runtime_error ("invalid timer-quantum");
|
||
|
|
||
|
Quantum.tv_sec = interval / 1000;
|
||
|
Quantum.tv_usec = (interval % 1000) * 1000;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*************************************
|
||
|
(STATIC) EventMachine_t::SetuidString
|
||
|
*************************************/
|
||
|
|
||
|
#ifdef OS_UNIX
|
||
|
void EventMachine_t::SetuidString (const char *username)
|
||
|
{
|
||
|
/* This method takes a caller-supplied username and tries to setuid
|
||
|
* to that user. There is no meaningful implementation (and no error)
|
||
|
* on Windows. On Unix, a failure to setuid the caller-supplied string
|
||
|
* causes a fatal abort, because presumably the program is calling here
|
||
|
* in order to fulfill a security requirement. If we fail silently,
|
||
|
* the user may continue to run with too much privilege.
|
||
|
*
|
||
|
* TODO, we need to decide on and document a way of generating C++ level errors
|
||
|
* that can be wrapped in documented Ruby exceptions, so users can catch
|
||
|
* and handle them. And distinguish it from errors that we WON'T let the Ruby
|
||
|
* user catch (like security-violations and resource-overallocation).
|
||
|
* A setuid failure here would be in the latter category.
|
||
|
*/
|
||
|
|
||
|
if (!username || !*username)
|
||
|
throw std::runtime_error ("setuid_string failed: no username specified");
|
||
|
|
||
|
errno = 0;
|
||
|
struct passwd *p = getpwnam (username);
|
||
|
if (!p) {
|
||
|
if (errno) {
|
||
|
char buf[200];
|
||
|
snprintf (buf, sizeof(buf)-1, "setuid_string failed: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
} else {
|
||
|
throw std::runtime_error ("setuid_string failed: unknown username");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (setuid (p->pw_uid) != 0)
|
||
|
throw std::runtime_error ("setuid_string failed: no setuid");
|
||
|
|
||
|
// Success.
|
||
|
}
|
||
|
#else
|
||
|
void EventMachine_t::SetuidString (const char *username UNUSED) { }
|
||
|
#endif
|
||
|
|
||
|
/****************************************
|
||
|
(STATIC) EventMachine_t::SetRlimitNofile
|
||
|
****************************************/
|
||
|
|
||
|
#ifdef OS_UNIX
|
||
|
int EventMachine_t::SetRlimitNofile (int nofiles)
|
||
|
{
|
||
|
struct rlimit rlim;
|
||
|
getrlimit (RLIMIT_NOFILE, &rlim);
|
||
|
if (nofiles >= 0) {
|
||
|
rlim.rlim_cur = nofiles;
|
||
|
if ((unsigned int)nofiles > rlim.rlim_max)
|
||
|
rlim.rlim_max = nofiles;
|
||
|
setrlimit (RLIMIT_NOFILE, &rlim);
|
||
|
// ignore the error return, for now at least.
|
||
|
// TODO, emit an error message someday when we have proper debug levels.
|
||
|
}
|
||
|
getrlimit (RLIMIT_NOFILE, &rlim);
|
||
|
return rlim.rlim_cur;
|
||
|
}
|
||
|
#else
|
||
|
int EventMachine_t::SetRlimitNofile (int nofiles UNUSED) { return 0; }
|
||
|
#endif
|
||
|
|
||
|
/*********************************
|
||
|
EventMachine_t::SignalLoopBreaker
|
||
|
*********************************/
|
||
|
|
||
|
void EventMachine_t::SignalLoopBreaker()
|
||
|
{
|
||
|
#ifdef OS_UNIX
|
||
|
(void)write (LoopBreakerWriter, "", 1);
|
||
|
#endif
|
||
|
#ifdef OS_WIN32
|
||
|
sendto (LoopBreakerReader, "", 0, 0, (struct sockaddr*)&(LoopBreakerTarget), sizeof(LoopBreakerTarget));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
/**************************************
|
||
|
EventMachine_t::_InitializeLoopBreaker
|
||
|
**************************************/
|
||
|
|
||
|
void EventMachine_t::_InitializeLoopBreaker()
|
||
|
{
|
||
|
/* A "loop-breaker" is a socket-descriptor that we can write to in order
|
||
|
* to break the main select loop. Primarily useful for things running on
|
||
|
* threads other than the main EM thread, so they can trigger processing
|
||
|
* of events that arise exogenously to the EM.
|
||
|
* Keep the loop-breaker pipe out of the main descriptor set, otherwise
|
||
|
* its events will get passed on to user code.
|
||
|
*/
|
||
|
|
||
|
#ifdef OS_UNIX
|
||
|
int fd[2];
|
||
|
#if defined (HAVE_CLOEXEC) && defined (HAVE_PIPE2)
|
||
|
int pipestatus = pipe2(fd, O_CLOEXEC);
|
||
|
if (pipestatus < 0) {
|
||
|
if (pipe(fd))
|
||
|
throw std::runtime_error (strerror(errno));
|
||
|
}
|
||
|
#else
|
||
|
if (pipe (fd))
|
||
|
throw std::runtime_error (strerror(errno));
|
||
|
#endif
|
||
|
if (!SetFdCloexec(fd[0]) || !SetFdCloexec(fd[1]))
|
||
|
throw std::runtime_error (strerror(errno));
|
||
|
|
||
|
LoopBreakerWriter = fd[1];
|
||
|
LoopBreakerReader = fd[0];
|
||
|
|
||
|
/* 16Jan11: Make sure the pipe is non-blocking, so more than 65k loopbreaks
|
||
|
* in one tick do not fill up the pipe and block the process on write() */
|
||
|
SetSocketNonblocking (LoopBreakerWriter);
|
||
|
#endif
|
||
|
|
||
|
#ifdef OS_WIN32
|
||
|
SOCKET sd = EmSocket (AF_INET, SOCK_DGRAM, 0);
|
||
|
if (sd == INVALID_SOCKET)
|
||
|
throw std::runtime_error ("no loop breaker socket");
|
||
|
SetSocketNonblocking (sd);
|
||
|
|
||
|
memset (&LoopBreakerTarget, 0, sizeof(LoopBreakerTarget));
|
||
|
LoopBreakerTarget.sin_family = AF_INET;
|
||
|
LoopBreakerTarget.sin_addr.s_addr = inet_addr ("127.0.0.1");
|
||
|
|
||
|
srand ((int)time(NULL));
|
||
|
int i;
|
||
|
for (i=0; i < 100; i++) {
|
||
|
int r = (rand() % 10000) + 20000;
|
||
|
LoopBreakerTarget.sin_port = htons (r);
|
||
|
if (bind (sd, (struct sockaddr*)&LoopBreakerTarget, sizeof(LoopBreakerTarget)) == 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (i == 100)
|
||
|
throw std::runtime_error ("no loop breaker");
|
||
|
LoopBreakerReader = sd;
|
||
|
#endif
|
||
|
|
||
|
#ifdef HAVE_EPOLL
|
||
|
if (Poller == Poller_Epoll) {
|
||
|
epfd = epoll_create (MaxEpollDescriptors);
|
||
|
if (epfd == -1) {
|
||
|
char buf[200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to create epoll descriptor: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
int cloexec = fcntl (epfd, F_GETFD, 0);
|
||
|
assert (cloexec >= 0);
|
||
|
cloexec |= FD_CLOEXEC;
|
||
|
fcntl (epfd, F_SETFD, cloexec);
|
||
|
|
||
|
assert (LoopBreakerReader >= 0);
|
||
|
LoopbreakDescriptor *ld = new LoopbreakDescriptor (LoopBreakerReader, this);
|
||
|
assert (ld);
|
||
|
Add (ld);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
if (Poller == Poller_Kqueue) {
|
||
|
kqfd = kqueue();
|
||
|
if (kqfd == -1) {
|
||
|
char buf[200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to create kqueue descriptor: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
// cloexec not needed. By definition, kqueues are not carried across forks.
|
||
|
|
||
|
assert (LoopBreakerReader >= 0);
|
||
|
LoopbreakDescriptor *ld = new LoopbreakDescriptor (LoopBreakerReader, this);
|
||
|
assert (ld);
|
||
|
Add (ld);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/***************************
|
||
|
EventMachine_t::_UpdateTime
|
||
|
***************************/
|
||
|
|
||
|
void EventMachine_t::_UpdateTime()
|
||
|
{
|
||
|
MyCurrentLoopTime = GetRealTime();
|
||
|
}
|
||
|
|
||
|
/***************************
|
||
|
EventMachine_t::GetRealTime
|
||
|
***************************/
|
||
|
|
||
|
// Two great writeups of cross-platform monotonic time are at:
|
||
|
// http://www.python.org/dev/peps/pep-0418
|
||
|
// http://nadeausoftware.com/articles/2012/04/c_c_tip_how_measure_elapsed_real_time_benchmarking
|
||
|
// Uncomment the #pragma messages to confirm which compile-time option was used
|
||
|
uint64_t EventMachine_t::GetRealTime()
|
||
|
{
|
||
|
uint64_t current_time;
|
||
|
|
||
|
#if defined(HAVE_CONST_CLOCK_MONOTONIC_RAW)
|
||
|
// #pragma message "GetRealTime: clock_gettime CLOCK_MONOTONIC_RAW"
|
||
|
// Linux 2.6.28 and above
|
||
|
struct timespec tv;
|
||
|
clock_gettime (CLOCK_MONOTONIC_RAW, &tv);
|
||
|
current_time = (((uint64_t)(tv.tv_sec)) * 1000000LL) + ((uint64_t)((tv.tv_nsec)/1000));
|
||
|
|
||
|
#elif defined(HAVE_CONST_CLOCK_MONOTONIC)
|
||
|
// #pragma message "GetRealTime: clock_gettime CLOCK_MONOTONIC"
|
||
|
// Linux, FreeBSD 5.0 and above, Solaris 8 and above, OpenBSD, NetBSD, DragonflyBSD
|
||
|
struct timespec tv;
|
||
|
clock_gettime (CLOCK_MONOTONIC, &tv);
|
||
|
current_time = (((uint64_t)(tv.tv_sec)) * 1000000LL) + ((uint64_t)((tv.tv_nsec)/1000));
|
||
|
|
||
|
#elif defined(HAVE_GETHRTIME)
|
||
|
// #pragma message "GetRealTime: gethrtime"
|
||
|
// Solaris and HP-UX
|
||
|
current_time = (uint64_t)gethrtime() / 1000;
|
||
|
|
||
|
#elif defined(OS_DARWIN)
|
||
|
// #pragma message "GetRealTime: mach_absolute_time"
|
||
|
// Mac OS X
|
||
|
// https://developer.apple.com/library/mac/qa/qa1398/_index.html
|
||
|
current_time = mach_absolute_time() * mach_timebase.numer / mach_timebase.denom / 1000;
|
||
|
|
||
|
#elif defined(OS_UNIX)
|
||
|
// #pragma message "GetRealTime: gettimeofday"
|
||
|
// Unix fallback
|
||
|
struct timeval tv;
|
||
|
gettimeofday (&tv, NULL);
|
||
|
current_time = (((uint64_t)(tv.tv_sec)) * 1000000LL) + ((uint64_t)(tv.tv_usec));
|
||
|
|
||
|
#elif defined(OS_WIN32)
|
||
|
// #pragma message "GetRealTime: GetTickCount"
|
||
|
// Future improvement: use GetTickCount64 in Windows Vista / Server 2008
|
||
|
unsigned tick = GetTickCount();
|
||
|
if (tick < LastTickCount)
|
||
|
TickCountTickover += 1;
|
||
|
LastTickCount = tick;
|
||
|
current_time = ((uint64_t)TickCountTickover << 32) + (uint64_t)tick;
|
||
|
current_time *= 1000; // convert to microseconds
|
||
|
|
||
|
#else
|
||
|
// #pragma message "GetRealTime: time"
|
||
|
// Universal fallback
|
||
|
current_time = (uint64_t)time(NULL) * 1000000LL;
|
||
|
#endif
|
||
|
|
||
|
return current_time;
|
||
|
}
|
||
|
|
||
|
/***********************************
|
||
|
EventMachine_t::_DispatchHeartbeats
|
||
|
***********************************/
|
||
|
|
||
|
void EventMachine_t::_DispatchHeartbeats()
|
||
|
{
|
||
|
// Store the first processed heartbeat descriptor and bail out if
|
||
|
// we see it again. This fixes an infinite loop in case the system time
|
||
|
// is changed out from underneath MyCurrentLoopTime.
|
||
|
const EventableDescriptor *head = NULL;
|
||
|
|
||
|
while (true) {
|
||
|
std::multimap<uint64_t,EventableDescriptor*>::iterator i = Heartbeats.begin();
|
||
|
if (i == Heartbeats.end())
|
||
|
break;
|
||
|
if (i->first > MyCurrentLoopTime)
|
||
|
break;
|
||
|
|
||
|
EventableDescriptor *ed = i->second;
|
||
|
if (ed == head)
|
||
|
break;
|
||
|
|
||
|
ed->Heartbeat();
|
||
|
QueueHeartbeat(ed);
|
||
|
|
||
|
if (head == NULL)
|
||
|
head = ed;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************
|
||
|
EventMachine_t::QueueHeartbeat
|
||
|
******************************/
|
||
|
|
||
|
void EventMachine_t::QueueHeartbeat(EventableDescriptor *ed)
|
||
|
{
|
||
|
uint64_t heartbeat = ed->GetNextHeartbeat();
|
||
|
|
||
|
if (heartbeat) {
|
||
|
#ifndef HAVE_MAKE_PAIR
|
||
|
Heartbeats.insert (std::multimap<uint64_t,EventableDescriptor*>::value_type (heartbeat, ed));
|
||
|
#else
|
||
|
Heartbeats.insert (std::make_pair (heartbeat, ed));
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************
|
||
|
EventMachine_t::ClearHeartbeat
|
||
|
******************************/
|
||
|
|
||
|
void EventMachine_t::ClearHeartbeat(uint64_t key, EventableDescriptor* ed)
|
||
|
{
|
||
|
std::multimap<uint64_t,EventableDescriptor*>::iterator it;
|
||
|
std::pair<std::multimap<uint64_t,EventableDescriptor*>::iterator,std::multimap<uint64_t,EventableDescriptor*>::iterator> ret;
|
||
|
ret = Heartbeats.equal_range (key);
|
||
|
for (it = ret.first; it != ret.second; ++it) {
|
||
|
if (it->second == ed) {
|
||
|
Heartbeats.erase (it);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*******************
|
||
|
EventMachine_t::Run
|
||
|
*******************/
|
||
|
|
||
|
void EventMachine_t::Run()
|
||
|
{
|
||
|
while (RunOnce()) ;
|
||
|
}
|
||
|
|
||
|
/***********************
|
||
|
EventMachine_t::RunOnce
|
||
|
***********************/
|
||
|
|
||
|
bool EventMachine_t::RunOnce()
|
||
|
{
|
||
|
_UpdateTime();
|
||
|
_RunTimers();
|
||
|
|
||
|
/* _Add must precede _Modify because the same descriptor might
|
||
|
* be on both lists during the same pass through the machine,
|
||
|
* and to modify a descriptor before adding it would fail.
|
||
|
*/
|
||
|
_AddNewDescriptors();
|
||
|
_ModifyDescriptors();
|
||
|
|
||
|
switch (Poller) {
|
||
|
case Poller_Epoll:
|
||
|
_RunEpollOnce();
|
||
|
break;
|
||
|
case Poller_Kqueue:
|
||
|
_RunKqueueOnce();
|
||
|
break;
|
||
|
case Poller_Default:
|
||
|
_RunSelectOnce();
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
_DispatchHeartbeats();
|
||
|
_CleanupSockets();
|
||
|
|
||
|
if (bTerminateSignalReceived)
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*****************************
|
||
|
EventMachine_t::_RunEpollOnce
|
||
|
*****************************/
|
||
|
|
||
|
void EventMachine_t::_RunEpollOnce()
|
||
|
{
|
||
|
#ifdef HAVE_EPOLL
|
||
|
assert (epfd != -1);
|
||
|
int s;
|
||
|
|
||
|
timeval tv = _TimeTilNextEvent();
|
||
|
|
||
|
#ifdef BUILD_FOR_RUBY
|
||
|
int ret = 0;
|
||
|
|
||
|
#ifdef HAVE_RB_WAIT_FOR_SINGLE_FD
|
||
|
if ((ret = rb_wait_for_single_fd(epfd, RB_WAITFD_IN|RB_WAITFD_PRI, &tv)) < 1) {
|
||
|
#else
|
||
|
fd_set fdreads;
|
||
|
|
||
|
FD_ZERO(&fdreads);
|
||
|
FD_SET(epfd, &fdreads);
|
||
|
|
||
|
if ((ret = rb_thread_select(epfd + 1, &fdreads, NULL, NULL, &tv)) < 1) {
|
||
|
#endif
|
||
|
if (ret == -1) {
|
||
|
assert(errno != EINVAL);
|
||
|
assert(errno != EBADF);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
TRAP_BEG;
|
||
|
s = epoll_wait (epfd, epoll_events, MaxEvents, 0);
|
||
|
TRAP_END;
|
||
|
#else
|
||
|
int duration = 0;
|
||
|
duration = duration + (tv.tv_sec * 1000);
|
||
|
duration = duration + (tv.tv_usec / 1000);
|
||
|
s = epoll_wait (epfd, epoll_events, MaxEvents, duration);
|
||
|
#endif
|
||
|
|
||
|
if (s > 0) {
|
||
|
for (int i=0; i < s; i++) {
|
||
|
EventableDescriptor *ed = (EventableDescriptor*) epoll_events[i].data.ptr;
|
||
|
|
||
|
if (ed->IsWatchOnly() && ed->GetSocket() == INVALID_SOCKET)
|
||
|
continue;
|
||
|
|
||
|
assert(ed->GetSocket() != INVALID_SOCKET);
|
||
|
|
||
|
if (epoll_events[i].events & EPOLLIN)
|
||
|
ed->Read();
|
||
|
if (epoll_events[i].events & EPOLLOUT)
|
||
|
ed->Write();
|
||
|
if (epoll_events[i].events & (EPOLLERR | EPOLLHUP))
|
||
|
ed->HandleError();
|
||
|
}
|
||
|
}
|
||
|
else if (s < 0) {
|
||
|
// epoll_wait can fail on error in a handful of ways.
|
||
|
// If this happens, then wait for a little while to avoid busy-looping.
|
||
|
// If the error was EINTR, we probably caught SIGCHLD or something,
|
||
|
// so keep the wait short.
|
||
|
timeval tv = {0, ((errno == EINTR) ? 5 : 50) * 1000};
|
||
|
EmSelect (0, NULL, NULL, NULL, &tv);
|
||
|
}
|
||
|
#else
|
||
|
throw std::runtime_error ("epoll is not implemented on this platform");
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
/******************************
|
||
|
EventMachine_t::_RunKqueueOnce
|
||
|
******************************/
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
void EventMachine_t::_RunKqueueOnce()
|
||
|
{
|
||
|
assert (kqfd != -1);
|
||
|
int k;
|
||
|
|
||
|
timeval tv = _TimeTilNextEvent();
|
||
|
|
||
|
struct timespec ts;
|
||
|
ts.tv_sec = tv.tv_sec;
|
||
|
ts.tv_nsec = tv.tv_usec * 1000;
|
||
|
|
||
|
#ifdef BUILD_FOR_RUBY
|
||
|
int ret = 0;
|
||
|
|
||
|
#ifdef HAVE_RB_WAIT_FOR_SINGLE_FD
|
||
|
if ((ret = rb_wait_for_single_fd(kqfd, RB_WAITFD_IN|RB_WAITFD_PRI, &tv)) < 1) {
|
||
|
#else
|
||
|
fd_set fdreads;
|
||
|
|
||
|
FD_ZERO(&fdreads);
|
||
|
FD_SET(kqfd, &fdreads);
|
||
|
|
||
|
if ((ret = rb_thread_select(kqfd + 1, &fdreads, NULL, NULL, &tv)) < 1) {
|
||
|
#endif
|
||
|
if (ret == -1) {
|
||
|
assert(errno != EINVAL);
|
||
|
assert(errno != EBADF);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
TRAP_BEG;
|
||
|
ts.tv_sec = ts.tv_nsec = 0;
|
||
|
k = kevent (kqfd, NULL, 0, Karray, MaxEvents, &ts);
|
||
|
TRAP_END;
|
||
|
#else
|
||
|
k = kevent (kqfd, NULL, 0, Karray, MaxEvents, &ts);
|
||
|
#endif
|
||
|
|
||
|
struct kevent *ke = Karray;
|
||
|
while (k > 0) {
|
||
|
switch (ke->filter)
|
||
|
{
|
||
|
case EVFILT_VNODE:
|
||
|
_HandleKqueueFileEvent (ke);
|
||
|
break;
|
||
|
|
||
|
case EVFILT_PROC:
|
||
|
_HandleKqueuePidEvent (ke);
|
||
|
break;
|
||
|
|
||
|
case EVFILT_READ:
|
||
|
case EVFILT_WRITE:
|
||
|
EventableDescriptor *ed = (EventableDescriptor*) (ke->udata);
|
||
|
assert (ed);
|
||
|
|
||
|
if (ed->IsWatchOnly() && ed->GetSocket() == INVALID_SOCKET)
|
||
|
break;
|
||
|
|
||
|
if (ke->filter == EVFILT_READ)
|
||
|
ed->Read();
|
||
|
else if (ke->filter == EVFILT_WRITE)
|
||
|
ed->Write();
|
||
|
else
|
||
|
std::cerr << "Discarding unknown kqueue event " << ke->filter << std::endl;
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
--k;
|
||
|
++ke;
|
||
|
}
|
||
|
|
||
|
// TODO, replace this with rb_thread_blocking_region for 1.9 builds.
|
||
|
#ifdef BUILD_FOR_RUBY
|
||
|
if (!rb_thread_alone()) {
|
||
|
rb_thread_schedule();
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
#else
|
||
|
void EventMachine_t::_RunKqueueOnce()
|
||
|
{
|
||
|
throw std::runtime_error ("kqueue is not implemented on this platform");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/*********************************
|
||
|
EventMachine_t::_TimeTilNextEvent
|
||
|
*********************************/
|
||
|
|
||
|
timeval EventMachine_t::_TimeTilNextEvent()
|
||
|
{
|
||
|
// 29jul11: Changed calculation base from MyCurrentLoopTime to the
|
||
|
// real time. As MyCurrentLoopTime is set at the beginning of an
|
||
|
// iteration and this calculation is done at the end, evenmachine
|
||
|
// will potentially oversleep by the amount of time the iteration
|
||
|
// took to execute.
|
||
|
uint64_t next_event = 0;
|
||
|
uint64_t current_time = GetRealTime();
|
||
|
|
||
|
if (!Heartbeats.empty()) {
|
||
|
std::multimap<uint64_t,EventableDescriptor*>::iterator heartbeats = Heartbeats.begin();
|
||
|
next_event = heartbeats->first;
|
||
|
}
|
||
|
|
||
|
if (!Timers.empty()) {
|
||
|
std::multimap<uint64_t,Timer_t>::iterator timers = Timers.begin();
|
||
|
if (next_event == 0 || timers->first < next_event)
|
||
|
next_event = timers->first;
|
||
|
}
|
||
|
|
||
|
if (!NewDescriptors.empty() || !ModifiedDescriptors.empty()) {
|
||
|
next_event = current_time;
|
||
|
}
|
||
|
|
||
|
timeval tv;
|
||
|
|
||
|
if (NumCloseScheduled > 0 || bTerminateSignalReceived) {
|
||
|
tv.tv_sec = tv.tv_usec = 0;
|
||
|
} else if (next_event == 0) {
|
||
|
tv = Quantum;
|
||
|
} else {
|
||
|
if (next_event > current_time) {
|
||
|
uint64_t duration = next_event - current_time;
|
||
|
tv.tv_sec = duration / 1000000;
|
||
|
tv.tv_usec = duration % 1000000;
|
||
|
} else {
|
||
|
tv.tv_sec = tv.tv_usec = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return tv;
|
||
|
}
|
||
|
|
||
|
/*******************************
|
||
|
EventMachine_t::_CleanupSockets
|
||
|
*******************************/
|
||
|
|
||
|
void EventMachine_t::_CleanupSockets()
|
||
|
{
|
||
|
// TODO, rip this out and only delete the descriptors we know have died,
|
||
|
// rather than traversing the whole list.
|
||
|
// Modified 05Jan08 per suggestions by Chris Heath. It's possible that
|
||
|
// an EventableDescriptor will have a descriptor value of -1. That will
|
||
|
// happen if EventableDescriptor::Close was called on it. In that case,
|
||
|
// don't call epoll_ctl to remove the socket's filters from the epoll set.
|
||
|
// According to the epoll docs, this happens automatically when the
|
||
|
// descriptor is closed anyway. This is different from the case where
|
||
|
// the socket has already been closed but the descriptor in the ED object
|
||
|
// hasn't yet been set to INVALID_SOCKET.
|
||
|
// In kqueue, closing a descriptor automatically removes its event filters.
|
||
|
int i, j;
|
||
|
int nSockets = Descriptors.size();
|
||
|
for (i=0, j=0; i < nSockets; i++) {
|
||
|
EventableDescriptor *ed = Descriptors[i];
|
||
|
assert (ed);
|
||
|
if (ed->ShouldDelete()) {
|
||
|
#ifdef HAVE_EPOLL
|
||
|
if (Poller == Poller_Epoll) {
|
||
|
assert (epfd != -1);
|
||
|
if (ed->GetSocket() != INVALID_SOCKET) {
|
||
|
int e = epoll_ctl (epfd, EPOLL_CTL_DEL, ed->GetSocket(), ed->GetEpollEvent());
|
||
|
// ENOENT or EBADF are not errors because the socket may be already closed when we get here.
|
||
|
if (e && (errno != ENOENT) && (errno != EBADF) && (errno != EPERM)) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to delete epoll event: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
}
|
||
|
ModifiedDescriptors.erase(ed);
|
||
|
}
|
||
|
#endif
|
||
|
delete ed;
|
||
|
}
|
||
|
else
|
||
|
Descriptors [j++] = ed;
|
||
|
}
|
||
|
while ((size_t)j < Descriptors.size())
|
||
|
Descriptors.pop_back();
|
||
|
}
|
||
|
|
||
|
/*********************************
|
||
|
EventMachine_t::_ModifyEpollEvent
|
||
|
*********************************/
|
||
|
|
||
|
#ifdef HAVE_EPOLL
|
||
|
void EventMachine_t::_ModifyEpollEvent (EventableDescriptor *ed)
|
||
|
{
|
||
|
if (Poller == Poller_Epoll) {
|
||
|
assert (epfd != -1);
|
||
|
assert (ed);
|
||
|
assert (ed->GetSocket() != INVALID_SOCKET);
|
||
|
int e = epoll_ctl (epfd, EPOLL_CTL_MOD, ed->GetSocket(), ed->GetEpollEvent());
|
||
|
if (e) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to modify epoll event: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
void EventMachine_t::_ModifyEpollEvent (EventableDescriptor *ed UNUSED) { }
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**************************
|
||
|
SelectData_t::SelectData_t
|
||
|
**************************/
|
||
|
|
||
|
SelectData_t::SelectData_t()
|
||
|
{
|
||
|
maxsocket = 0;
|
||
|
rb_fd_init (&fdreads);
|
||
|
rb_fd_init (&fdwrites);
|
||
|
rb_fd_init (&fderrors);
|
||
|
}
|
||
|
|
||
|
SelectData_t::~SelectData_t()
|
||
|
{
|
||
|
rb_fd_term (&fdreads);
|
||
|
rb_fd_term (&fdwrites);
|
||
|
rb_fd_term (&fderrors);
|
||
|
}
|
||
|
|
||
|
#ifdef BUILD_FOR_RUBY
|
||
|
/*****************
|
||
|
_SelectDataSelect
|
||
|
*****************/
|
||
|
|
||
|
#if defined(HAVE_RB_THREAD_BLOCKING_REGION) || defined(HAVE_RB_THREAD_CALL_WITHOUT_GVL)
|
||
|
static VALUE _SelectDataSelect (void *v)
|
||
|
{
|
||
|
SelectData_t *sd = (SelectData_t*)v;
|
||
|
sd->nSockets = rb_fd_select (sd->maxsocket+1, &(sd->fdreads), &(sd->fdwrites), &(sd->fderrors), &(sd->tv));
|
||
|
return Qnil;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*********************
|
||
|
SelectData_t::_Select
|
||
|
*********************/
|
||
|
|
||
|
int SelectData_t::_Select()
|
||
|
{
|
||
|
#if defined(HAVE_RB_THREAD_CALL_WITHOUT_GVL)
|
||
|
// added in ruby 1.9.3
|
||
|
rb_thread_call_without_gvl ((void *(*)(void *))_SelectDataSelect, (void*)this, RUBY_UBF_IO, 0);
|
||
|
return nSockets;
|
||
|
#elif defined(HAVE_TBR)
|
||
|
// added in ruby 1.9.1, deprecated in ruby 2.0.0
|
||
|
rb_thread_blocking_region (_SelectDataSelect, (void*)this, RUBY_UBF_IO, 0);
|
||
|
return nSockets;
|
||
|
#else
|
||
|
return EmSelect (maxsocket+1, &fdreads, &fdwrites, &fderrors, &tv);
|
||
|
#endif
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void SelectData_t::_Clear()
|
||
|
{
|
||
|
maxsocket = 0;
|
||
|
rb_fd_zero (&fdreads);
|
||
|
rb_fd_zero (&fdwrites);
|
||
|
rb_fd_zero (&fderrors);
|
||
|
}
|
||
|
|
||
|
/******************************
|
||
|
EventMachine_t::_RunSelectOnce
|
||
|
******************************/
|
||
|
|
||
|
void EventMachine_t::_RunSelectOnce()
|
||
|
{
|
||
|
// Crank the event machine once.
|
||
|
// If there are no descriptors to process, then sleep
|
||
|
// for a few hundred mills to avoid busy-looping.
|
||
|
// This is based on a select loop. Alternately provide epoll
|
||
|
// if we know we're running on a 2.6 kernel.
|
||
|
// epoll will be effective if we provide it as an alternative,
|
||
|
// however it has the same problem interoperating with Ruby
|
||
|
// threads that select does.
|
||
|
|
||
|
// Get ready for select()
|
||
|
SelectData->_Clear();
|
||
|
|
||
|
// Always read the loop-breaker reader.
|
||
|
// Changed 23Aug06, provisionally implemented for Windows with a UDP socket
|
||
|
// running on localhost with a randomly-chosen port. (*Puke*)
|
||
|
// Windows has a version of the Unix pipe() library function, but it doesn't
|
||
|
// give you back descriptors that are selectable.
|
||
|
rb_fd_set (LoopBreakerReader, &(SelectData->fdreads));
|
||
|
if (SelectData->maxsocket < LoopBreakerReader)
|
||
|
SelectData->maxsocket = LoopBreakerReader;
|
||
|
|
||
|
// prepare the sockets for reading and writing
|
||
|
size_t i;
|
||
|
for (i = 0; i < Descriptors.size(); i++) {
|
||
|
EventableDescriptor *ed = Descriptors[i];
|
||
|
assert (ed);
|
||
|
SOCKET sd = ed->GetSocket();
|
||
|
if (ed->IsWatchOnly() && sd == INVALID_SOCKET)
|
||
|
continue;
|
||
|
assert (sd != INVALID_SOCKET);
|
||
|
|
||
|
if (ed->SelectForRead())
|
||
|
rb_fd_set (sd, &(SelectData->fdreads));
|
||
|
if (ed->SelectForWrite())
|
||
|
rb_fd_set (sd, &(SelectData->fdwrites));
|
||
|
|
||
|
#ifdef OS_WIN32
|
||
|
/* 21Sep09: on windows, a non-blocking connect() that fails does not come up as writable.
|
||
|
Instead, it is added to the error set. See http://www.mail-archive.com/openssl-users@openssl.org/msg58500.html
|
||
|
*/
|
||
|
if (ed->IsConnectPending())
|
||
|
rb_fd_set (sd, &(SelectData->fderrors));
|
||
|
#endif
|
||
|
|
||
|
if (SelectData->maxsocket < sd)
|
||
|
SelectData->maxsocket = sd;
|
||
|
}
|
||
|
|
||
|
|
||
|
{ // read and write the sockets
|
||
|
//timeval tv = {1, 0}; // Solaris fails if the microseconds member is >= 1000000.
|
||
|
//timeval tv = Quantum;
|
||
|
SelectData->tv = _TimeTilNextEvent();
|
||
|
int s = SelectData->_Select();
|
||
|
//rb_thread_blocking_region(xxx,(void*)&SelectData,RUBY_UBF_IO,0);
|
||
|
//int s = EmSelect (SelectData.maxsocket+1, &(SelectData.fdreads), &(SelectData.fdwrites), NULL, &(SelectData.tv));
|
||
|
//int s = SelectData.nSockets;
|
||
|
if (s > 0) {
|
||
|
/* Changed 01Jun07. We used to handle the Loop-breaker right here.
|
||
|
* Now we do it AFTER all the regular descriptors. There's an
|
||
|
* incredibly important and subtle reason for this. Code on
|
||
|
* loop breakers is sometimes used to cause the reactor core to
|
||
|
* cycle (for example, to allow outbound network buffers to drain).
|
||
|
* If a loop-breaker handler reschedules itself (say, after determining
|
||
|
* that the write buffers are still too full), then it will execute
|
||
|
* IMMEDIATELY if _ReadLoopBreaker is done here instead of after
|
||
|
* the other descriptors are processed. That defeats the whole purpose.
|
||
|
*/
|
||
|
for (i=0; i < Descriptors.size(); i++) {
|
||
|
EventableDescriptor *ed = Descriptors[i];
|
||
|
assert (ed);
|
||
|
SOCKET sd = ed->GetSocket();
|
||
|
if (ed->IsWatchOnly() && sd == INVALID_SOCKET)
|
||
|
continue;
|
||
|
assert (sd != INVALID_SOCKET);
|
||
|
|
||
|
if (rb_fd_isset (sd, &(SelectData->fdwrites))) {
|
||
|
// Double-check SelectForWrite() still returns true. If not, one of the callbacks must have
|
||
|
// modified some value since we checked SelectForWrite() earlier in this method.
|
||
|
if (ed->SelectForWrite())
|
||
|
ed->Write();
|
||
|
}
|
||
|
if (rb_fd_isset (sd, &(SelectData->fdreads)))
|
||
|
ed->Read();
|
||
|
if (rb_fd_isset (sd, &(SelectData->fderrors)))
|
||
|
ed->HandleError();
|
||
|
}
|
||
|
|
||
|
if (rb_fd_isset (LoopBreakerReader, &(SelectData->fdreads)))
|
||
|
_ReadLoopBreaker();
|
||
|
}
|
||
|
else if (s < 0) {
|
||
|
switch (errno) {
|
||
|
case EBADF:
|
||
|
_CleanBadDescriptors();
|
||
|
break;
|
||
|
case EINVAL:
|
||
|
throw std::runtime_error ("Somehow EM passed an invalid nfds or invalid timeout to select(2), please report this!");
|
||
|
break;
|
||
|
default:
|
||
|
// select can fail on error in a handful of ways.
|
||
|
// If this happens, then wait for a little while to avoid busy-looping.
|
||
|
// If the error was EINTR, we probably caught SIGCHLD or something,
|
||
|
// so keep the wait short.
|
||
|
timeval tv = {0, ((errno == EINTR) ? 5 : 50) * 1000};
|
||
|
EmSelect (0, NULL, NULL, NULL, &tv);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void EventMachine_t::_CleanBadDescriptors()
|
||
|
{
|
||
|
size_t i;
|
||
|
|
||
|
for (i = 0; i < Descriptors.size(); i++) {
|
||
|
EventableDescriptor *ed = Descriptors[i];
|
||
|
if (ed->ShouldDelete())
|
||
|
continue;
|
||
|
|
||
|
SOCKET sd = ed->GetSocket();
|
||
|
|
||
|
struct timeval tv;
|
||
|
tv.tv_sec = 0;
|
||
|
tv.tv_usec = 0;
|
||
|
|
||
|
rb_fdset_t fds;
|
||
|
rb_fd_init(&fds);
|
||
|
rb_fd_set(sd, &fds);
|
||
|
|
||
|
int ret = rb_fd_select(sd + 1, &fds, NULL, NULL, &tv);
|
||
|
rb_fd_term(&fds);
|
||
|
|
||
|
if (ret == -1) {
|
||
|
if (errno == EBADF)
|
||
|
ed->ScheduleClose(false);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/********************************
|
||
|
EventMachine_t::_ReadLoopBreaker
|
||
|
********************************/
|
||
|
|
||
|
void EventMachine_t::_ReadLoopBreaker()
|
||
|
{
|
||
|
/* The loop breaker has selected readable.
|
||
|
* Read it ONCE (it may block if we try to read it twice)
|
||
|
* and send a loop-break event back to user code.
|
||
|
*/
|
||
|
char buffer [1024];
|
||
|
(void)read (LoopBreakerReader, buffer, sizeof(buffer));
|
||
|
if (EventCallback)
|
||
|
(*EventCallback)(0, EM_LOOPBREAK_SIGNAL, "", 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**************************
|
||
|
EventMachine_t::_RunTimers
|
||
|
**************************/
|
||
|
|
||
|
void EventMachine_t::_RunTimers()
|
||
|
{
|
||
|
// These are caller-defined timer handlers.
|
||
|
// We rely on the fact that multimaps sort by their keys to avoid
|
||
|
// inspecting the whole list every time we come here.
|
||
|
// Just keep inspecting and processing the list head until we hit
|
||
|
// one that hasn't expired yet.
|
||
|
|
||
|
while (true) {
|
||
|
std::multimap<uint64_t,Timer_t>::iterator i = Timers.begin();
|
||
|
if (i == Timers.end())
|
||
|
break;
|
||
|
if (i->first > MyCurrentLoopTime)
|
||
|
break;
|
||
|
if (EventCallback)
|
||
|
(*EventCallback) (0, EM_TIMER_FIRED, NULL, i->second.GetBinding());
|
||
|
Timers.erase (i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/***********************************
|
||
|
EventMachine_t::InstallOneshotTimer
|
||
|
***********************************/
|
||
|
|
||
|
const uintptr_t EventMachine_t::InstallOneshotTimer (uint64_t milliseconds)
|
||
|
{
|
||
|
if (Timers.size() > MaxOutstandingTimers)
|
||
|
return false;
|
||
|
|
||
|
uint64_t fire_at = GetRealTime();
|
||
|
fire_at += ((uint64_t)milliseconds) * 1000LL;
|
||
|
|
||
|
Timer_t t;
|
||
|
#ifndef HAVE_MAKE_PAIR
|
||
|
std::multimap<uint64_t,Timer_t>::iterator i = Timers.insert (std::multimap<uint64_t,Timer_t>::value_type (fire_at, t));
|
||
|
#else
|
||
|
std::multimap<uint64_t,Timer_t>::iterator i = Timers.insert (std::make_pair (fire_at, t));
|
||
|
#endif
|
||
|
return i->second.GetBinding();
|
||
|
}
|
||
|
|
||
|
|
||
|
/*******************************
|
||
|
EventMachine_t::ConnectToServer
|
||
|
*******************************/
|
||
|
|
||
|
const uintptr_t EventMachine_t::ConnectToServer (const char *bind_addr, int bind_port, const char *server, int port)
|
||
|
{
|
||
|
/* We want to spend no more than a few seconds waiting for a connection
|
||
|
* to a remote host. So we use a nonblocking connect.
|
||
|
* Linux disobeys the usual rules for nonblocking connects.
|
||
|
* Per Stevens (UNP p.410), you expect a nonblocking connect to select
|
||
|
* both readable and writable on error, and not to return EINPROGRESS
|
||
|
* if the connect can be fulfilled immediately. Linux violates both
|
||
|
* of these expectations.
|
||
|
* Any kind of nonblocking connect on Linux returns EINPROGRESS.
|
||
|
* The socket will then return writable when the disposition of the
|
||
|
* connect is known, but it will not also be readable in case of
|
||
|
* error! Weirdly, it will be readable in case there is data to read!!!
|
||
|
* (Which can happen with protocols like SSH and SMTP.)
|
||
|
* I suppose if you were so inclined you could consider this logical,
|
||
|
* but it's not the way Unix has historically done it.
|
||
|
* So we ignore the readable flag and read getsockopt to see if there
|
||
|
* was an error connecting. A select timeout works as expected.
|
||
|
* In regard to getsockopt: Linux does the Berkeley-style thing,
|
||
|
* not the Solaris-style, and returns zero with the error code in
|
||
|
* the error parameter.
|
||
|
* Return the binding-text of the newly-created pending connection,
|
||
|
* or NULL if there was a problem.
|
||
|
*/
|
||
|
|
||
|
if (!server || !*server || !port)
|
||
|
throw std::runtime_error ("invalid server or port");
|
||
|
|
||
|
struct sockaddr_storage bind_as;
|
||
|
size_t bind_as_len = sizeof bind_as;
|
||
|
int gai = name2address (server, port, SOCK_STREAM, (struct sockaddr *)&bind_as, &bind_as_len);
|
||
|
if (gai != 0) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to resolve address: %s", gai_strerror(gai));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
|
||
|
SOCKET sd = EmSocket (bind_as.ss_family, SOCK_STREAM, 0);
|
||
|
if (sd == INVALID_SOCKET) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to create new socket: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
|
||
|
// From here on, ALL error returns must close the socket.
|
||
|
// Set the new socket nonblocking.
|
||
|
if (!SetSocketNonblocking (sd)) {
|
||
|
close (sd);
|
||
|
throw std::runtime_error ("unable to set socket as non-blocking");
|
||
|
}
|
||
|
// Disable slow-start (Nagle algorithm).
|
||
|
int one = 1;
|
||
|
setsockopt (sd, IPPROTO_TCP, TCP_NODELAY, (char*) &one, sizeof(one));
|
||
|
// Set reuseaddr to improve performance on restarts
|
||
|
setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, (char*) &one, sizeof(one));
|
||
|
|
||
|
if (bind_addr) {
|
||
|
struct sockaddr_storage bind_to;
|
||
|
size_t bind_to_len = sizeof bind_to;
|
||
|
gai = name2address (bind_addr, bind_port, SOCK_STREAM, (struct sockaddr *)&bind_to, &bind_to_len);
|
||
|
if (gai != 0) {
|
||
|
close (sd);
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "invalid bind address: %s", gai_strerror(gai));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
if (bind (sd, (struct sockaddr *)&bind_to, bind_to_len) < 0) {
|
||
|
close (sd);
|
||
|
throw std::runtime_error ("couldn't bind to address");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uintptr_t out = 0;
|
||
|
|
||
|
#ifdef OS_UNIX
|
||
|
int e_reason = 0;
|
||
|
if (connect (sd, (struct sockaddr *)&bind_as, bind_as_len) == 0) {
|
||
|
// This is a connect success, which Linux appears
|
||
|
// never to give when the socket is nonblocking,
|
||
|
// even if the connection is intramachine or to
|
||
|
// localhost.
|
||
|
|
||
|
/* Changed this branch 08Aug06. Evidently some kernels
|
||
|
* (FreeBSD for example) will actually return success from
|
||
|
* a nonblocking connect. This is a pretty simple case,
|
||
|
* just set up the new connection and clear the pending flag.
|
||
|
* Thanks to Chris Ochs for helping track this down.
|
||
|
* This branch never gets taken on Linux or (oddly) OSX.
|
||
|
* The original behavior was to throw an unimplemented,
|
||
|
* which the user saw as a fatal exception. Very unfriendly.
|
||
|
*
|
||
|
* Tweaked 10Aug06. Even though the connect disposition is
|
||
|
* known, we still set the connect-pending flag. That way
|
||
|
* some needed initialization will happen in the ConnectionDescriptor.
|
||
|
* (To wit, the ConnectionCompleted event gets sent to the client.)
|
||
|
*/
|
||
|
ConnectionDescriptor *cd = new ConnectionDescriptor (sd, this);
|
||
|
if (!cd)
|
||
|
throw std::runtime_error ("no connection allocated");
|
||
|
cd->SetConnectPending (true);
|
||
|
Add (cd);
|
||
|
out = cd->GetBinding();
|
||
|
}
|
||
|
else if (errno == EINPROGRESS) {
|
||
|
// Errno will generally always be EINPROGRESS, but on Linux
|
||
|
// we have to look at getsockopt to be sure what really happened.
|
||
|
int error = 0;
|
||
|
socklen_t len;
|
||
|
len = sizeof(error);
|
||
|
int o = getsockopt (sd, SOL_SOCKET, SO_ERROR, &error, &len);
|
||
|
if ((o == 0) && (error == 0)) {
|
||
|
// Here, there's no disposition.
|
||
|
// Put the connection on the stack and wait for it to complete
|
||
|
// or time out.
|
||
|
ConnectionDescriptor *cd = new ConnectionDescriptor (sd, this);
|
||
|
if (!cd)
|
||
|
throw std::runtime_error ("no connection allocated");
|
||
|
cd->SetConnectPending (true);
|
||
|
Add (cd);
|
||
|
out = cd->GetBinding();
|
||
|
} else {
|
||
|
// Fall through to the !out case below.
|
||
|
e_reason = error;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// The error from connect was something other then EINPROGRESS (EHOSTDOWN, etc).
|
||
|
// Fall through to the !out case below
|
||
|
e_reason = errno;
|
||
|
}
|
||
|
|
||
|
if (!out) {
|
||
|
/* This could be connection refused or some such thing.
|
||
|
* We will come here on Linux if a localhost connection fails.
|
||
|
* Changed 16Jul06: Originally this branch was a no-op, and
|
||
|
* we'd drop down to the end of the method, close the socket,
|
||
|
* and return NULL, which would cause the caller to GET A
|
||
|
* FATAL EXCEPTION. Now we keep the socket around but schedule an
|
||
|
* immediate close on it, so the caller will get a close-event
|
||
|
* scheduled on it. This was only an issue for localhost connections
|
||
|
* to non-listening ports. We may eventually need to revise this
|
||
|
* revised behavior, in case it causes problems like making it hard
|
||
|
* for people to know that a failure occurred.
|
||
|
*/
|
||
|
ConnectionDescriptor *cd = new ConnectionDescriptor (sd, this);
|
||
|
if (!cd)
|
||
|
throw std::runtime_error ("no connection allocated");
|
||
|
cd->SetUnbindReasonCode (e_reason);
|
||
|
cd->ScheduleClose (false);
|
||
|
Add (cd);
|
||
|
out = cd->GetBinding();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef OS_WIN32
|
||
|
if (connect (sd, (struct sockaddr *)&bind_as, bind_as_len) == 0) {
|
||
|
// This is a connect success, which Windows appears
|
||
|
// never to give when the socket is nonblocking,
|
||
|
// even if the connection is intramachine or to
|
||
|
// localhost.
|
||
|
throw std::runtime_error ("unimplemented");
|
||
|
}
|
||
|
else if (WSAGetLastError() == WSAEWOULDBLOCK) {
|
||
|
// Here, there's no disposition.
|
||
|
// Windows appears not to surface refused connections or
|
||
|
// such stuff at this point.
|
||
|
// Put the connection on the stack and wait for it to complete
|
||
|
// or time out.
|
||
|
ConnectionDescriptor *cd = new ConnectionDescriptor (sd, this);
|
||
|
if (!cd)
|
||
|
throw std::runtime_error ("no connection allocated");
|
||
|
cd->SetConnectPending (true);
|
||
|
Add (cd);
|
||
|
out = cd->GetBinding();
|
||
|
}
|
||
|
else {
|
||
|
// The error from connect was something other then WSAEWOULDBLOCK.
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
if (!out)
|
||
|
close (sd);
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
/***********************************
|
||
|
EventMachine_t::ConnectToUnixServer
|
||
|
***********************************/
|
||
|
|
||
|
#ifdef OS_UNIX
|
||
|
const uintptr_t EventMachine_t::ConnectToUnixServer (const char *server)
|
||
|
{
|
||
|
/* Connect to a Unix-domain server, which by definition is running
|
||
|
* on the same host.
|
||
|
* There is no meaningful implementation on Windows.
|
||
|
* There's no need to do a nonblocking connect, since the connection
|
||
|
* is always local and can always be fulfilled immediately.
|
||
|
*/
|
||
|
|
||
|
uintptr_t out = 0;
|
||
|
|
||
|
if (!server || !*server)
|
||
|
return 0;
|
||
|
|
||
|
sockaddr_un pun;
|
||
|
memset (&pun, 0, sizeof(pun));
|
||
|
pun.sun_family = AF_LOCAL;
|
||
|
|
||
|
// You ordinarily expect the server name field to be at least 1024 bytes long,
|
||
|
// but on Linux it can be MUCH shorter.
|
||
|
if (strlen(server) >= sizeof(pun.sun_path))
|
||
|
throw std::runtime_error ("unix-domain server name is too long");
|
||
|
|
||
|
|
||
|
strcpy (pun.sun_path, server);
|
||
|
|
||
|
SOCKET fd = EmSocket (AF_LOCAL, SOCK_STREAM, 0);
|
||
|
if (fd == INVALID_SOCKET)
|
||
|
return 0;
|
||
|
|
||
|
// From here on, ALL error returns must close the socket.
|
||
|
// NOTE: At this point, the socket is still a blocking socket.
|
||
|
if (connect (fd, (struct sockaddr*)&pun, sizeof(pun)) != 0) {
|
||
|
close (fd);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Set the newly-connected socket nonblocking.
|
||
|
if (!SetSocketNonblocking (fd)) {
|
||
|
close (fd);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Set up a connection descriptor and add it to the event-machine.
|
||
|
// Observe, even though we know the connection status is connect-success,
|
||
|
// we still set the "pending" flag, so some needed initializations take
|
||
|
// place.
|
||
|
ConnectionDescriptor *cd = new ConnectionDescriptor (fd, this);
|
||
|
if (!cd)
|
||
|
throw std::runtime_error ("no connection allocated");
|
||
|
cd->SetConnectPending (true);
|
||
|
Add (cd);
|
||
|
out = cd->GetBinding();
|
||
|
|
||
|
if (!out)
|
||
|
close (fd);
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
#else
|
||
|
const uintptr_t EventMachine_t::ConnectToUnixServer (const char *server UNUSED)
|
||
|
{
|
||
|
throw std::runtime_error ("unix-domain connection unavailable on this platform");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/************************
|
||
|
EventMachine_t::AttachFD
|
||
|
************************/
|
||
|
|
||
|
const uintptr_t EventMachine_t::AttachFD (SOCKET fd, bool watch_mode)
|
||
|
{
|
||
|
#ifdef OS_UNIX
|
||
|
if (fcntl(fd, F_GETFL, 0) < 0) {
|
||
|
if (errno) {
|
||
|
throw std::runtime_error (strerror(errno));
|
||
|
} else {
|
||
|
throw std::runtime_error ("invalid file descriptor");
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef OS_WIN32
|
||
|
// TODO: add better check for invalid file descriptors (see ioctlsocket or getsockopt)
|
||
|
if (fd == INVALID_SOCKET)
|
||
|
throw std::runtime_error ("invalid file descriptor");
|
||
|
#endif
|
||
|
|
||
|
{// Check for duplicate descriptors
|
||
|
size_t i;
|
||
|
for (i = 0; i < Descriptors.size(); i++) {
|
||
|
EventableDescriptor *ed = Descriptors[i];
|
||
|
assert (ed);
|
||
|
if (ed->GetSocket() == fd)
|
||
|
throw std::runtime_error ("adding existing descriptor");
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < NewDescriptors.size(); i++) {
|
||
|
EventableDescriptor *ed = NewDescriptors[i];
|
||
|
assert (ed);
|
||
|
if (ed->GetSocket() == fd)
|
||
|
throw std::runtime_error ("adding existing new descriptor");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!watch_mode)
|
||
|
SetSocketNonblocking(fd);
|
||
|
|
||
|
ConnectionDescriptor *cd = new ConnectionDescriptor (fd, this);
|
||
|
if (!cd)
|
||
|
throw std::runtime_error ("no connection allocated");
|
||
|
|
||
|
cd->SetAttached(true);
|
||
|
cd->SetWatchOnly(watch_mode);
|
||
|
cd->SetConnectPending (false);
|
||
|
|
||
|
Add (cd);
|
||
|
|
||
|
const uintptr_t out = cd->GetBinding();
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
/************************
|
||
|
EventMachine_t::DetachFD
|
||
|
************************/
|
||
|
|
||
|
int EventMachine_t::DetachFD (EventableDescriptor *ed)
|
||
|
{
|
||
|
if (!ed)
|
||
|
throw std::runtime_error ("detaching bad descriptor");
|
||
|
|
||
|
SOCKET fd = ed->GetSocket();
|
||
|
|
||
|
#ifdef HAVE_EPOLL
|
||
|
if (Poller == Poller_Epoll) {
|
||
|
if (ed->GetSocket() != INVALID_SOCKET) {
|
||
|
assert (epfd != -1);
|
||
|
int e = epoll_ctl (epfd, EPOLL_CTL_DEL, ed->GetSocket(), ed->GetEpollEvent());
|
||
|
// ENOENT or EBADF are not errors because the socket may be already closed when we get here.
|
||
|
if (e && (errno != ENOENT) && (errno != EBADF)) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to delete epoll event: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
if (Poller == Poller_Kqueue) {
|
||
|
// remove any read/write events for this fd
|
||
|
struct kevent k;
|
||
|
#ifdef __NetBSD__
|
||
|
EV_SET (&k, ed->GetSocket(), EVFILT_READ | EVFILT_WRITE, EV_DELETE, 0, 0, (intptr_t)ed);
|
||
|
#else
|
||
|
EV_SET (&k, ed->GetSocket(), EVFILT_READ | EVFILT_WRITE, EV_DELETE, 0, 0, ed);
|
||
|
#endif
|
||
|
int t = kevent (kqfd, &k, 1, NULL, 0, NULL);
|
||
|
if (t < 0 && (errno != ENOENT) && (errno != EBADF)) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to delete kqueue event: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Prevent the descriptor from being modified, in case DetachFD was called from a timer or next_tick
|
||
|
ModifiedDescriptors.erase (ed);
|
||
|
|
||
|
// Prevent the descriptor from being added, in case DetachFD was called in the same tick as AttachFD
|
||
|
for (size_t i = 0; i < NewDescriptors.size(); i++) {
|
||
|
if (ed == NewDescriptors[i]) {
|
||
|
NewDescriptors.erase(NewDescriptors.begin() + i);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Set MySocket = INVALID_SOCKET so ShouldDelete() is true (and the descriptor gets deleted and removed),
|
||
|
// and also to prevent anyone from calling close() on the detached fd
|
||
|
ed->SetSocketInvalid();
|
||
|
|
||
|
return fd;
|
||
|
}
|
||
|
|
||
|
/************
|
||
|
name2address
|
||
|
************/
|
||
|
|
||
|
int EventMachine_t::name2address (const char *server, int port, int socktype, struct sockaddr *addr, size_t *addr_len)
|
||
|
{
|
||
|
if (!server || !*server)
|
||
|
server = "0.0.0.0";
|
||
|
|
||
|
struct addrinfo *ai;
|
||
|
struct addrinfo hints;
|
||
|
memset (&hints, 0, sizeof(hints));
|
||
|
hints.ai_socktype = socktype;
|
||
|
hints.ai_family = AF_UNSPEC;
|
||
|
hints.ai_flags = AI_NUMERICSERV | AI_ADDRCONFIG;
|
||
|
|
||
|
char portstr[12];
|
||
|
snprintf(portstr, sizeof(portstr), "%u", port);
|
||
|
|
||
|
int gai = getaddrinfo (server, portstr, &hints, &ai);
|
||
|
if (gai == 0) {
|
||
|
assert (ai->ai_addrlen <= *addr_len);
|
||
|
memcpy (addr, ai->ai_addr, ai->ai_addrlen);
|
||
|
*addr_len = ai->ai_addrlen;
|
||
|
freeaddrinfo(ai);
|
||
|
}
|
||
|
|
||
|
return gai;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*******************************
|
||
|
EventMachine_t::CreateTcpServer
|
||
|
*******************************/
|
||
|
|
||
|
const uintptr_t EventMachine_t::CreateTcpServer (const char *server, int port)
|
||
|
{
|
||
|
/* Create a TCP-acceptor (server) socket and add it to the event machine.
|
||
|
* Return the binding of the new acceptor to the caller.
|
||
|
* This binding will be referenced when the new acceptor sends events
|
||
|
* to indicate accepted connections.
|
||
|
*/
|
||
|
|
||
|
|
||
|
struct sockaddr_storage bind_here;
|
||
|
size_t bind_here_len = sizeof bind_here;
|
||
|
if (0 != name2address (server, port, SOCK_STREAM, (struct sockaddr *)&bind_here, &bind_here_len))
|
||
|
return 0;
|
||
|
|
||
|
SOCKET sd_accept = EmSocket (bind_here.ss_family, SOCK_STREAM, 0);
|
||
|
if (sd_accept == INVALID_SOCKET) {
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
{ // set reuseaddr to improve performance on restarts.
|
||
|
int oval = 1;
|
||
|
if (setsockopt (sd_accept, SOL_SOCKET, SO_REUSEADDR, (char*)&oval, sizeof(oval)) < 0) {
|
||
|
//__warning ("setsockopt failed while creating listener","");
|
||
|
goto fail;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{ // set CLOEXEC. Only makes sense on Unix
|
||
|
#ifdef OS_UNIX
|
||
|
int cloexec = fcntl (sd_accept, F_GETFD, 0);
|
||
|
assert (cloexec >= 0);
|
||
|
cloexec |= FD_CLOEXEC;
|
||
|
fcntl (sd_accept, F_SETFD, cloexec);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
if (bind (sd_accept, (struct sockaddr *)&bind_here, bind_here_len)) {
|
||
|
//__warning ("binding failed");
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if (listen (sd_accept, 100)) {
|
||
|
//__warning ("listen failed");
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
return AttachSD(sd_accept);
|
||
|
|
||
|
fail:
|
||
|
if (sd_accept != INVALID_SOCKET)
|
||
|
close (sd_accept);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**********************************
|
||
|
EventMachine_t::OpenDatagramSocket
|
||
|
**********************************/
|
||
|
|
||
|
const uintptr_t EventMachine_t::OpenDatagramSocket (const char *address, int port)
|
||
|
{
|
||
|
uintptr_t output_binding = 0;
|
||
|
|
||
|
struct sockaddr_storage bind_here;
|
||
|
size_t bind_here_len = sizeof bind_here;
|
||
|
if (0 != name2address (address, port, SOCK_DGRAM, (struct sockaddr *)&bind_here, &bind_here_len))
|
||
|
return 0;
|
||
|
|
||
|
// from here on, early returns must close the socket!
|
||
|
SOCKET sd = EmSocket (bind_here.ss_family, SOCK_DGRAM, 0);
|
||
|
if (sd == INVALID_SOCKET)
|
||
|
goto fail;
|
||
|
|
||
|
{ // set the SO_REUSEADDR on the socket before we bind, otherwise it won't work for a second one
|
||
|
int oval = 1;
|
||
|
if (setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, (char*)&oval, sizeof(oval)) < 0)
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
// Set the new socket nonblocking.
|
||
|
if (!SetSocketNonblocking (sd))
|
||
|
goto fail;
|
||
|
|
||
|
if (bind (sd, (struct sockaddr *)&bind_here, bind_here_len) != 0)
|
||
|
goto fail;
|
||
|
|
||
|
{ // Looking good.
|
||
|
DatagramDescriptor *ds = new DatagramDescriptor (sd, this);
|
||
|
if (!ds)
|
||
|
throw std::runtime_error ("unable to allocate datagram-socket");
|
||
|
Add (ds);
|
||
|
output_binding = ds->GetBinding();
|
||
|
}
|
||
|
|
||
|
return output_binding;
|
||
|
|
||
|
fail:
|
||
|
if (sd != INVALID_SOCKET)
|
||
|
close (sd);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*******************
|
||
|
EventMachine_t::Add
|
||
|
*******************/
|
||
|
|
||
|
void EventMachine_t::Add (EventableDescriptor *ed)
|
||
|
{
|
||
|
if (!ed)
|
||
|
throw std::runtime_error ("added bad descriptor");
|
||
|
ed->SetEventCallback (EventCallback);
|
||
|
NewDescriptors.push_back (ed);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*******************************
|
||
|
EventMachine_t::ArmKqueueWriter
|
||
|
*******************************/
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
void EventMachine_t::ArmKqueueWriter (EventableDescriptor *ed)
|
||
|
{
|
||
|
if (Poller == Poller_Kqueue) {
|
||
|
if (!ed)
|
||
|
throw std::runtime_error ("added bad descriptor");
|
||
|
struct kevent k;
|
||
|
#ifdef __NetBSD__
|
||
|
EV_SET (&k, ed->GetSocket(), EVFILT_WRITE, EV_ADD | EV_ONESHOT, 0, 0, (intptr_t)ed);
|
||
|
#else
|
||
|
EV_SET (&k, ed->GetSocket(), EVFILT_WRITE, EV_ADD | EV_ONESHOT, 0, 0, ed);
|
||
|
#endif
|
||
|
int t = kevent (kqfd, &k, 1, NULL, 0, NULL);
|
||
|
if (t < 0) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "arm kqueue writer failed on %d: %s", ed->GetSocket(), strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
void EventMachine_t::ArmKqueueWriter (EventableDescriptor *ed UNUSED) { }
|
||
|
#endif
|
||
|
|
||
|
/*******************************
|
||
|
EventMachine_t::ArmKqueueReader
|
||
|
*******************************/
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
void EventMachine_t::ArmKqueueReader (EventableDescriptor *ed)
|
||
|
{
|
||
|
if (Poller == Poller_Kqueue) {
|
||
|
if (!ed)
|
||
|
throw std::runtime_error ("added bad descriptor");
|
||
|
struct kevent k;
|
||
|
#ifdef __NetBSD__
|
||
|
EV_SET (&k, ed->GetSocket(), EVFILT_READ, EV_ADD, 0, 0, (intptr_t)ed);
|
||
|
#else
|
||
|
EV_SET (&k, ed->GetSocket(), EVFILT_READ, EV_ADD, 0, 0, ed);
|
||
|
#endif
|
||
|
int t = kevent (kqfd, &k, 1, NULL, 0, NULL);
|
||
|
if (t < 0) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "arm kqueue reader failed on %d: %s", ed->GetSocket(), strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
void EventMachine_t::ArmKqueueReader (EventableDescriptor *ed UNUSED) { }
|
||
|
#endif
|
||
|
|
||
|
/**********************************
|
||
|
EventMachine_t::_AddNewDescriptors
|
||
|
**********************************/
|
||
|
|
||
|
void EventMachine_t::_AddNewDescriptors()
|
||
|
{
|
||
|
/* Avoid adding descriptors to the main descriptor list
|
||
|
* while we're actually traversing the list.
|
||
|
* Any descriptors that are added as a result of processing timers
|
||
|
* or acceptors should go on a temporary queue and then added
|
||
|
* while we're not traversing the main list.
|
||
|
* Also, it (rarely) happens that a newly-created descriptor
|
||
|
* is immediately scheduled to close. It might be a good
|
||
|
* idea not to bother scheduling these for I/O but if
|
||
|
* we do that, we might bypass some important processing.
|
||
|
*/
|
||
|
|
||
|
for (size_t i = 0; i < NewDescriptors.size(); i++) {
|
||
|
EventableDescriptor *ed = NewDescriptors[i];
|
||
|
if (ed == NULL)
|
||
|
throw std::runtime_error ("adding bad descriptor");
|
||
|
|
||
|
#if HAVE_EPOLL
|
||
|
if (Poller == Poller_Epoll) {
|
||
|
assert (epfd != -1);
|
||
|
int e = epoll_ctl (epfd, EPOLL_CTL_ADD, ed->GetSocket(), ed->GetEpollEvent());
|
||
|
if (e) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to add new descriptor: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if HAVE_KQUEUE
|
||
|
/*
|
||
|
if (Poller == Poller_Kqueue) {
|
||
|
// INCOMPLETE. Some descriptors don't want to be readable.
|
||
|
assert (kqfd != -1);
|
||
|
struct kevent k;
|
||
|
#ifdef __NetBSD__
|
||
|
EV_SET (&k, ed->GetSocket(), EVFILT_READ, EV_ADD, 0, 0, (intptr_t)ed);
|
||
|
#else
|
||
|
EV_SET (&k, ed->GetSocket(), EVFILT_READ, EV_ADD, 0, 0, ed);
|
||
|
#endif
|
||
|
int t = kevent (kqfd, &k, 1, NULL, 0, NULL);
|
||
|
assert (t == 0);
|
||
|
}
|
||
|
*/
|
||
|
#endif
|
||
|
|
||
|
QueueHeartbeat(ed);
|
||
|
Descriptors.push_back (ed);
|
||
|
}
|
||
|
NewDescriptors.clear();
|
||
|
}
|
||
|
|
||
|
|
||
|
/**********************************
|
||
|
EventMachine_t::_ModifyDescriptors
|
||
|
**********************************/
|
||
|
|
||
|
void EventMachine_t::_ModifyDescriptors()
|
||
|
{
|
||
|
/* For implementations which don't level check every descriptor on
|
||
|
* every pass through the machine, as select does.
|
||
|
* If we're not selecting, then descriptors need a way to signal to the
|
||
|
* machine that their readable or writable status has changed.
|
||
|
* That's what the ::Modify call is for. We do it this way to avoid
|
||
|
* modifying descriptors during the loop traversal, where it can easily
|
||
|
* happen that an object (like a UDP socket) gets data written on it by
|
||
|
* the application during #post_init. That would take place BEFORE the
|
||
|
* descriptor even gets added to the epoll descriptor, so the modify
|
||
|
* operation will crash messily.
|
||
|
* Another really messy possibility is for a descriptor to put itself
|
||
|
* on the Modified list, and then get deleted before we get here.
|
||
|
* Remember, deletes happen after the I/O traversal and before the
|
||
|
* next pass through here. So we have to make sure when we delete a
|
||
|
* descriptor to remove it from the Modified list.
|
||
|
*/
|
||
|
|
||
|
#ifdef HAVE_EPOLL
|
||
|
if (Poller == Poller_Epoll) {
|
||
|
std::set<EventableDescriptor*>::iterator i = ModifiedDescriptors.begin();
|
||
|
while (i != ModifiedDescriptors.end()) {
|
||
|
assert (*i);
|
||
|
_ModifyEpollEvent (*i);
|
||
|
++i;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
if (Poller == Poller_Kqueue) {
|
||
|
std::set<EventableDescriptor*>::iterator i = ModifiedDescriptors.begin();
|
||
|
while (i != ModifiedDescriptors.end()) {
|
||
|
assert (*i);
|
||
|
if ((*i)->GetKqueueArmWrite())
|
||
|
ArmKqueueWriter (*i);
|
||
|
++i;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
ModifiedDescriptors.clear();
|
||
|
}
|
||
|
|
||
|
|
||
|
/**********************
|
||
|
EventMachine_t::Modify
|
||
|
**********************/
|
||
|
|
||
|
void EventMachine_t::Modify (EventableDescriptor *ed)
|
||
|
{
|
||
|
if (!ed)
|
||
|
throw std::runtime_error ("modified bad descriptor");
|
||
|
ModifiedDescriptors.insert (ed);
|
||
|
}
|
||
|
|
||
|
|
||
|
/***********************
|
||
|
EventMachine_t::Deregister
|
||
|
***********************/
|
||
|
|
||
|
void EventMachine_t::Deregister (EventableDescriptor *ed)
|
||
|
{
|
||
|
if (!ed)
|
||
|
throw std::runtime_error ("modified bad descriptor");
|
||
|
#ifdef HAVE_EPOLL
|
||
|
// cut/paste from _CleanupSockets(). The error handling could be
|
||
|
// refactored out of there, but it is cut/paste all over the
|
||
|
// file already.
|
||
|
if (Poller == Poller_Epoll) {
|
||
|
assert (epfd != -1);
|
||
|
assert (ed->GetSocket() != INVALID_SOCKET);
|
||
|
int e = epoll_ctl (epfd, EPOLL_CTL_DEL, ed->GetSocket(), ed->GetEpollEvent());
|
||
|
// ENOENT or EBADF are not errors because the socket may be already closed when we get here.
|
||
|
if (e && (errno != ENOENT) && (errno != EBADF) && (errno != EPERM)) {
|
||
|
char buf [200];
|
||
|
snprintf (buf, sizeof(buf)-1, "unable to delete epoll event: %s", strerror(errno));
|
||
|
throw std::runtime_error (buf);
|
||
|
}
|
||
|
ModifiedDescriptors.erase(ed);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
if (Poller == Poller_Kqueue) {
|
||
|
assert (ed->GetSocket() != INVALID_SOCKET);
|
||
|
|
||
|
ModifiedDescriptors.erase(ed);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
/**************************************
|
||
|
EventMachine_t::CreateUnixDomainServer
|
||
|
**************************************/
|
||
|
|
||
|
#ifdef OS_UNIX
|
||
|
const uintptr_t EventMachine_t::CreateUnixDomainServer (const char *filename)
|
||
|
{
|
||
|
/* Create a UNIX-domain acceptor (server) socket and add it to the event machine.
|
||
|
* Return the binding of the new acceptor to the caller.
|
||
|
* This binding will be referenced when the new acceptor sends events
|
||
|
* to indicate accepted connections.
|
||
|
* THERE IS NO MEANINGFUL IMPLEMENTATION ON WINDOWS.
|
||
|
*/
|
||
|
|
||
|
struct sockaddr_un s_sun;
|
||
|
|
||
|
SOCKET sd_accept = EmSocket (AF_LOCAL, SOCK_STREAM, 0);
|
||
|
if (sd_accept == INVALID_SOCKET) {
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if (!filename || !*filename)
|
||
|
goto fail;
|
||
|
unlink (filename);
|
||
|
|
||
|
bzero (&s_sun, sizeof(s_sun));
|
||
|
s_sun.sun_family = AF_LOCAL;
|
||
|
strncpy (s_sun.sun_path, filename, sizeof(s_sun.sun_path)-1);
|
||
|
|
||
|
// don't bother with reuseaddr for a local socket.
|
||
|
|
||
|
{ // set CLOEXEC. Only makes sense on Unix
|
||
|
#ifdef OS_UNIX
|
||
|
int cloexec = fcntl (sd_accept, F_GETFD, 0);
|
||
|
assert (cloexec >= 0);
|
||
|
cloexec |= FD_CLOEXEC;
|
||
|
fcntl (sd_accept, F_SETFD, cloexec);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
if (bind (sd_accept, (struct sockaddr*)&s_sun, sizeof(s_sun))) {
|
||
|
//__warning ("binding failed");
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if (listen (sd_accept, 100)) {
|
||
|
//__warning ("listen failed");
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
return AttachSD(sd_accept);
|
||
|
|
||
|
fail:
|
||
|
if (sd_accept != INVALID_SOCKET)
|
||
|
close (sd_accept);
|
||
|
return 0;
|
||
|
}
|
||
|
#else
|
||
|
const uintptr_t EventMachine_t::CreateUnixDomainServer (const char *filename UNUSED)
|
||
|
{
|
||
|
throw std::runtime_error ("unix-domain server unavailable on this platform");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**************************************
|
||
|
EventMachine_t::AttachSD
|
||
|
**************************************/
|
||
|
|
||
|
const uintptr_t EventMachine_t::AttachSD (SOCKET sd_accept)
|
||
|
{
|
||
|
uintptr_t output_binding = 0;
|
||
|
|
||
|
{
|
||
|
// Set the acceptor non-blocking.
|
||
|
// THIS IS CRUCIALLY IMPORTANT because we read it in a select loop.
|
||
|
if (!SetSocketNonblocking (sd_accept)) {
|
||
|
//int val = fcntl (sd_accept, F_GETFL, 0);
|
||
|
//if (fcntl (sd_accept, F_SETFL, val | O_NONBLOCK) == -1) {
|
||
|
goto fail;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{ // Looking good.
|
||
|
AcceptorDescriptor *ad = new AcceptorDescriptor (sd_accept, this);
|
||
|
if (!ad)
|
||
|
throw std::runtime_error ("unable to allocate acceptor");
|
||
|
Add (ad);
|
||
|
output_binding = ad->GetBinding();
|
||
|
}
|
||
|
|
||
|
return output_binding;
|
||
|
|
||
|
fail:
|
||
|
if (sd_accept != INVALID_SOCKET)
|
||
|
close (sd_accept);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**************************
|
||
|
EventMachine_t::Socketpair
|
||
|
**************************/
|
||
|
|
||
|
#ifdef OS_UNIX
|
||
|
const uintptr_t EventMachine_t::Socketpair (char * const * cmd_strings)
|
||
|
{
|
||
|
// Make sure the incoming array of command strings is sane.
|
||
|
if (!cmd_strings)
|
||
|
return 0;
|
||
|
int j;
|
||
|
for (j=0; j < 2048 && cmd_strings[j]; j++)
|
||
|
;
|
||
|
if ((j==0) || (j==2048))
|
||
|
return 0;
|
||
|
|
||
|
uintptr_t output_binding = 0;
|
||
|
|
||
|
int sv[2];
|
||
|
if (socketpair (AF_LOCAL, SOCK_STREAM, 0, sv) < 0)
|
||
|
return 0;
|
||
|
// from here, all early returns must close the pair of sockets.
|
||
|
|
||
|
// Set the parent side of the socketpair nonblocking.
|
||
|
// We don't care about the child side, and most child processes will expect their
|
||
|
// stdout to be blocking. Thanks to Duane Johnson and Bill Kelly for pointing this out.
|
||
|
// Obviously DON'T set CLOEXEC.
|
||
|
if (!SetSocketNonblocking (sv[0])) {
|
||
|
close (sv[0]);
|
||
|
close (sv[1]);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
pid_t f = fork();
|
||
|
if (f > 0) {
|
||
|
close (sv[1]);
|
||
|
PipeDescriptor *pd = new PipeDescriptor (sv[0], f, this);
|
||
|
if (!pd)
|
||
|
throw std::runtime_error ("unable to allocate pipe");
|
||
|
Add (pd);
|
||
|
output_binding = pd->GetBinding();
|
||
|
}
|
||
|
else if (f == 0) {
|
||
|
close (sv[0]);
|
||
|
dup2 (sv[1], STDIN_FILENO);
|
||
|
close (sv[1]);
|
||
|
dup2 (STDIN_FILENO, STDOUT_FILENO);
|
||
|
execvp (cmd_strings[0], cmd_strings+1);
|
||
|
exit (-1); // end the child process if the exec doesn't work.
|
||
|
}
|
||
|
else
|
||
|
throw std::runtime_error ("no fork");
|
||
|
|
||
|
return output_binding;
|
||
|
}
|
||
|
#else
|
||
|
const uintptr_t EventMachine_t::Socketpair (char * const * cmd_strings UNUSED)
|
||
|
{
|
||
|
throw std::runtime_error ("socketpair is currently unavailable on this platform");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
/****************************
|
||
|
EventMachine_t::OpenKeyboard
|
||
|
****************************/
|
||
|
|
||
|
const uintptr_t EventMachine_t::OpenKeyboard()
|
||
|
{
|
||
|
KeyboardDescriptor *kd = new KeyboardDescriptor (this);
|
||
|
if (!kd)
|
||
|
throw std::runtime_error ("no keyboard-object allocated");
|
||
|
Add (kd);
|
||
|
return kd->GetBinding();
|
||
|
}
|
||
|
|
||
|
|
||
|
/**********************************
|
||
|
EventMachine_t::GetConnectionCount
|
||
|
**********************************/
|
||
|
|
||
|
int EventMachine_t::GetConnectionCount ()
|
||
|
{
|
||
|
int i = 0;
|
||
|
// Subtract one for epoll or kqueue because of the LoopbreakDescriptor
|
||
|
if (Poller == Poller_Epoll || Poller == Poller_Kqueue)
|
||
|
i = 1;
|
||
|
|
||
|
return Descriptors.size() + NewDescriptors.size() - i;
|
||
|
}
|
||
|
|
||
|
|
||
|
/************************
|
||
|
EventMachine_t::WatchPid
|
||
|
************************/
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
const uintptr_t EventMachine_t::WatchPid (int pid)
|
||
|
{
|
||
|
if (Poller != Poller_Kqueue)
|
||
|
throw std::runtime_error("must enable kqueue (EM.kqueue=true) for pid watching support");
|
||
|
|
||
|
struct kevent event;
|
||
|
int kqres;
|
||
|
|
||
|
EV_SET(&event, pid, EVFILT_PROC, EV_ADD, NOTE_EXIT | NOTE_FORK, 0, 0);
|
||
|
|
||
|
// Attempt to register the event
|
||
|
kqres = kevent(kqfd, &event, 1, NULL, 0, NULL);
|
||
|
if (kqres == -1) {
|
||
|
char errbuf[200];
|
||
|
sprintf(errbuf, "failed to register file watch descriptor with kqueue: %s", strerror(errno));
|
||
|
throw std::runtime_error(errbuf);
|
||
|
}
|
||
|
Bindable_t* b = new Bindable_t();
|
||
|
Pids.insert(std::make_pair (pid, b));
|
||
|
|
||
|
return b->GetBinding();
|
||
|
}
|
||
|
#else
|
||
|
const uintptr_t EventMachine_t::WatchPid (int pid UNUSED)
|
||
|
{
|
||
|
throw std::runtime_error("no pid watching support on this system");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/**************************
|
||
|
EventMachine_t::UnwatchPid
|
||
|
**************************/
|
||
|
|
||
|
void EventMachine_t::UnwatchPid (int pid)
|
||
|
{
|
||
|
Bindable_t *b = Pids[pid];
|
||
|
assert(b);
|
||
|
Pids.erase(pid);
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
struct kevent k;
|
||
|
|
||
|
EV_SET(&k, pid, EVFILT_PROC, EV_DELETE, 0, 0, 0);
|
||
|
/*int t =*/ kevent (kqfd, &k, 1, NULL, 0, NULL);
|
||
|
// t==-1 if the process already exited; ignore this for now
|
||
|
#endif
|
||
|
|
||
|
if (EventCallback)
|
||
|
(*EventCallback)(b->GetBinding(), EM_CONNECTION_UNBOUND, NULL, 0);
|
||
|
|
||
|
delete b;
|
||
|
}
|
||
|
|
||
|
void EventMachine_t::UnwatchPid (const uintptr_t sig)
|
||
|
{
|
||
|
for(std::map<int, Bindable_t*>::iterator i=Pids.begin(); i != Pids.end(); i++)
|
||
|
{
|
||
|
if (i->second->GetBinding() == sig) {
|
||
|
UnwatchPid (i->first);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
throw std::runtime_error("attempted to remove invalid pid signature");
|
||
|
}
|
||
|
|
||
|
|
||
|
/*************************
|
||
|
EventMachine_t::WatchFile
|
||
|
*************************/
|
||
|
|
||
|
const uintptr_t EventMachine_t::WatchFile (const char *fpath)
|
||
|
{
|
||
|
struct stat sb;
|
||
|
int sres;
|
||
|
int wd = -1;
|
||
|
|
||
|
sres = stat(fpath, &sb);
|
||
|
|
||
|
if (sres == -1) {
|
||
|
char errbuf[300];
|
||
|
sprintf(errbuf, "error registering file %s for watching: %s", fpath, strerror(errno));
|
||
|
throw std::runtime_error(errbuf);
|
||
|
}
|
||
|
|
||
|
#ifdef HAVE_INOTIFY
|
||
|
if (!inotify) {
|
||
|
inotify = new InotifyDescriptor(this);
|
||
|
assert (inotify);
|
||
|
Add(inotify);
|
||
|
}
|
||
|
|
||
|
wd = inotify_add_watch(inotify->GetSocket(), fpath,
|
||
|
IN_MODIFY | IN_DELETE_SELF | IN_MOVE_SELF | IN_CREATE | IN_DELETE | IN_MOVE) ;
|
||
|
if (wd == -1) {
|
||
|
char errbuf[300];
|
||
|
sprintf(errbuf, "failed to open file %s for registering with inotify: %s", fpath, strerror(errno));
|
||
|
throw std::runtime_error(errbuf);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
if (Poller != Poller_Kqueue)
|
||
|
throw std::runtime_error("must enable kqueue (EM.kqueue=true) for file watching support");
|
||
|
|
||
|
// With kqueue we have to open the file first and use the resulting fd to register for events
|
||
|
wd = open(fpath, O_RDONLY);
|
||
|
if (wd == -1) {
|
||
|
char errbuf[300];
|
||
|
sprintf(errbuf, "failed to open file %s for registering with kqueue: %s", fpath, strerror(errno));
|
||
|
throw std::runtime_error(errbuf);
|
||
|
}
|
||
|
_RegisterKqueueFileEvent(wd);
|
||
|
#endif
|
||
|
|
||
|
if (wd != -1) {
|
||
|
Bindable_t* b = new Bindable_t();
|
||
|
Files.insert(std::make_pair (wd, b));
|
||
|
|
||
|
return b->GetBinding();
|
||
|
}
|
||
|
|
||
|
throw std::runtime_error("no file watching support on this system"); // is this the right thing to do?
|
||
|
}
|
||
|
|
||
|
|
||
|
/***************************
|
||
|
EventMachine_t::UnwatchFile
|
||
|
***************************/
|
||
|
|
||
|
void EventMachine_t::UnwatchFile (int wd)
|
||
|
{
|
||
|
Bindable_t *b = Files[wd];
|
||
|
assert(b);
|
||
|
Files.erase(wd);
|
||
|
|
||
|
#ifdef HAVE_INOTIFY
|
||
|
inotify_rm_watch(inotify->GetSocket(), wd);
|
||
|
#elif HAVE_KQUEUE
|
||
|
// With kqueue, closing the monitored fd automatically clears all registered events for it
|
||
|
close(wd);
|
||
|
#endif
|
||
|
|
||
|
if (EventCallback)
|
||
|
(*EventCallback)(b->GetBinding(), EM_CONNECTION_UNBOUND, NULL, 0);
|
||
|
|
||
|
delete b;
|
||
|
}
|
||
|
|
||
|
void EventMachine_t::UnwatchFile (const uintptr_t sig)
|
||
|
{
|
||
|
for(std::map<int, Bindable_t*>::iterator i=Files.begin(); i != Files.end(); i++)
|
||
|
{
|
||
|
if (i->second->GetBinding() == sig) {
|
||
|
UnwatchFile (i->first);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
throw std::runtime_error("attempted to remove invalid watch signature");
|
||
|
}
|
||
|
|
||
|
|
||
|
/***********************************
|
||
|
EventMachine_t::_ReadInotify_Events
|
||
|
************************************/
|
||
|
|
||
|
void EventMachine_t::_ReadInotifyEvents()
|
||
|
{
|
||
|
#ifdef HAVE_INOTIFY
|
||
|
char buffer[1024];
|
||
|
|
||
|
assert(EventCallback);
|
||
|
|
||
|
for (;;) {
|
||
|
int returned = read(inotify->GetSocket(), buffer, sizeof(buffer));
|
||
|
assert(!(returned == 0 || (returned == -1 && errno == EINVAL)));
|
||
|
if (returned <= 0) {
|
||
|
break;
|
||
|
}
|
||
|
int current = 0;
|
||
|
while (current < returned) {
|
||
|
struct inotify_event* event = (struct inotify_event*)(buffer+current);
|
||
|
std::map<int, Bindable_t*>::const_iterator bindable = Files.find(event->wd);
|
||
|
if (bindable != Files.end()) {
|
||
|
if (event->mask & (IN_MODIFY | IN_CREATE | IN_DELETE | IN_MOVE)){
|
||
|
(*EventCallback)(bindable->second->GetBinding(), EM_CONNECTION_READ, "modified", 8);
|
||
|
}
|
||
|
if (event->mask & IN_MOVE_SELF){
|
||
|
(*EventCallback)(bindable->second->GetBinding(), EM_CONNECTION_READ, "moved", 5);
|
||
|
}
|
||
|
if (event->mask & IN_DELETE_SELF) {
|
||
|
(*EventCallback)(bindable->second->GetBinding(), EM_CONNECTION_READ, "deleted", 7);
|
||
|
UnwatchFile ((int)event->wd);
|
||
|
}
|
||
|
}
|
||
|
current += sizeof(struct inotify_event) + event->len;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
/*************************************
|
||
|
EventMachine_t::_HandleKqueuePidEvent
|
||
|
*************************************/
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
void EventMachine_t::_HandleKqueuePidEvent(struct kevent *event)
|
||
|
{
|
||
|
assert(EventCallback);
|
||
|
|
||
|
if (event->fflags & NOTE_FORK)
|
||
|
(*EventCallback)(Pids [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "fork", 4);
|
||
|
if (event->fflags & NOTE_EXIT) {
|
||
|
(*EventCallback)(Pids [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "exit", 4);
|
||
|
// stop watching the pid if it died
|
||
|
UnwatchPid ((int)event->ident);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**************************************
|
||
|
EventMachine_t::_HandleKqueueFileEvent
|
||
|
***************************************/
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
void EventMachine_t::_HandleKqueueFileEvent(struct kevent *event)
|
||
|
{
|
||
|
assert(EventCallback);
|
||
|
|
||
|
if (event->fflags & NOTE_WRITE)
|
||
|
(*EventCallback)(Files [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "modified", 8);
|
||
|
if (event->fflags & NOTE_RENAME)
|
||
|
(*EventCallback)(Files [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "moved", 5);
|
||
|
if (event->fflags & NOTE_DELETE) {
|
||
|
(*EventCallback)(Files [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "deleted", 7);
|
||
|
UnwatchFile ((int)event->ident);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/****************************************
|
||
|
EventMachine_t::_RegisterKqueueFileEvent
|
||
|
*****************************************/
|
||
|
|
||
|
#ifdef HAVE_KQUEUE
|
||
|
void EventMachine_t::_RegisterKqueueFileEvent(int fd)
|
||
|
{
|
||
|
struct kevent newevent;
|
||
|
int kqres;
|
||
|
|
||
|
// Setup the event with our fd and proper flags
|
||
|
EV_SET(&newevent, fd, EVFILT_VNODE, EV_ADD | EV_CLEAR, NOTE_DELETE | NOTE_RENAME | NOTE_WRITE, 0, 0);
|
||
|
|
||
|
// Attempt to register the event
|
||
|
kqres = kevent(kqfd, &newevent, 1, NULL, 0, NULL);
|
||
|
if (kqres == -1) {
|
||
|
char errbuf[200];
|
||
|
sprintf(errbuf, "failed to register file watch descriptor with kqueue: %s", strerror(errno));
|
||
|
close(fd);
|
||
|
throw std::runtime_error(errbuf);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/************************************
|
||
|
EventMachine_t::GetHeartbeatInterval
|
||
|
*************************************/
|
||
|
|
||
|
float EventMachine_t::GetHeartbeatInterval()
|
||
|
{
|
||
|
return ((float)HeartbeatInterval / 1000000);
|
||
|
}
|
||
|
|
||
|
|
||
|
/************************************
|
||
|
EventMachine_t::SetHeartbeatInterval
|
||
|
*************************************/
|
||
|
|
||
|
int EventMachine_t::SetHeartbeatInterval(float interval)
|
||
|
{
|
||
|
int iv = (int)(interval * 1000000);
|
||
|
if (iv > 0) {
|
||
|
HeartbeatInterval = iv;
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
//#endif // OS_UNIX
|